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Abstract The aim of this paper is to study the decomposition of pseudo-radioactive
products that follow a dynamics determined by a trigonometric factor. In particular
for maps of the form 5™ is proved that an asymptotic sampling recomposition
property, generalizing the classical Shannon—Whittaker—Kotel nikov Theorem, works.
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1 Introduction and statement of the main result

In [4], we studied the decomposition of pseudo-radioactive products that follow
a Gaussian dynamics in terms of a generalization of the well-known Shannon—
Whittaker—Kotel’nikov Theorem (see, for instance, [7] and [8]) for a non-banded
limited maps on L2(R), i.e. for Paley-Wiener signals.

One of the main characteristics of this kind of products is that their decomposition
dynamics is unknown except for a little amount of laboratory temporal samples. Some
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experimental results have shown that, locally, their behaviors have a Gaussian adjust-
ment, that is, their decomposition function is f(¢) = e’“z, A > 0. In [4] we saw that
this type of functions satisfies an asymptotic sampling recomposition property called
P.

This paper follows the spirit of [4] and extends its results to pseudo—radioactive
materials whose dynamics is not, strictly speaking, a Gaussian function. More pre-
cisely, we shall prove that the function f (1) = e“**"") holds the property P for every
t. Note that the fact that property P works for trigonometrical maps implies that is pos-
sible to use the recomposition property for chemical reactions models with oscillators,
i.e., ordinary differential equations of order two.

2 On the property P

We shall remember that a central result of the Signal Theory is the Shannon—Whittaker—
Kotel’nikov’s Theorem (see [7] or [8]), based on the normalized cardinal sinus map
defined by:

sin(mwt)
S e

Later, Middleton incorporated a new theorem dealing with band step functions (see
[6]), and opened the door to important generalizations. Marvasti and Jain (see [5])
proved that the bandwidth of a signal can be compressed by a ratio of % if and only if

the signal has n_order zero crossings or zeros (if complex), and Agud and Cataldn
(see [1]) stated a new generalization where they prove that we can apply the SWK
theorem to a particular kind of signals using less samples per unit of time . All of these
generalizations and expansions tried to obtain approximations of non band-limited
signals using band-limited ones by increasing their band size. In [4] we studied a
different approach, because we kept constant the sampling frequency and generalized
in the limit the results of Marvasti et al. and Agud et al. (see [4] and references
inside).

Antufa et al. (see [2] and [3]) stated and proved, respectively, the following property
‘P and theorem.

Property 1 P.Let f: R — Rbeamapandt € RY. We say that f holds the property
P for T if

Z f% (é) sinc(tt — k)) (1)

keZ

Theorem 1 The Gaussian maps, i.e. maps of the form e_’\’Z, hold property P for
every given t € RT.

Now we shall prove an analogous result for the function f(¢) = (7",
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3 Auxiliary results

Lemma 1 The equality

7 cot(rz) = — + z - )

holds for all z € Z.
In order to prove this lemma, we need, previously, the following one:

Lemma 2 (The additive Herglotz Lemma) Let f be an entire function such that
1 Z 1 z4+1
=_f(z —fl=——), vzeC. 3
f@ 2f(2)+2f( . ) 2 3
Then f is constant.
Proof Assume that f is an entire function and satisfies (3), and let D, be the disk
={zeC:lz] =1},

with r > 1. Itis clear that if z € D, then 3, ”1 € D,.
Let M = m%x{| @I} If we d1fferent1ate the expression (3), we obtain:
z€D,

r@o=57E)+5f (” 1) vzeD,

-)

Hence, | f/(z)| < %, for all z, in contradiction with the hypothesis, unless M = 0. In
this case, f'(z) = O in D,, and so f is constant. O

SO,

<2M

4£'@) = ‘f/ (5)+r (Z

We can now prove Lemma 1.

Proof (Lemma 1) Let us consider the function

00
g(Z) nli{lgozz+k Z+nZ;4 2—}12

It is clear that 7w cot(;rz) y g(z) are meromorphic functions, Z—periodic, with simple
polesatz =n,n € Z.
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It is immediate that cot(;rz) satisfies (3), since

tn(z-i— 1)

Tz 1
ot —CO
2 2

1
cot(mrz) = - +

—c
2

n
Similarly,as > HL,C satisfies as well (3), up to aremainder term that forn — oo tends

=—n
to 0, we can state that the function f(z) = g(z) — & cot(mrz) is an entire function that
satisfies Lemma 2. Hence, f(z) is constant. But f (%) = 0, since 7 cot(mwrz) vanishes
atz = % and the sum g (%) is a real telescopic series

$\2) 7 —dn2
n=1
we have that f(z) = 0. O

From the Eq. (2), a couple of related identities can be obtained:

Lemma 3 The equalities

o0
iz — __ 4z
7 tan = = 21 2n—12—22
_1\n+l n,_ (4)
S (el D KR R S
n2—z2 — 2 2zsin(mz)

hold for all z € C.

Proof Having in mind that 77 tan %5¢ = 7 cot %5* — 27 cot(z), we have
z — Z o 4z
ncot; — 27 cot(mz) =ZZ— —Z R

n=1 (5)2 - n2 n=lI <

Splitting the last series into even and odd terms, we have:

oo o0 o oo
RN N SR S
S —dn? 2 - (n )2 S —dn? T e (2n 1) -2

Regarding the second identity, note that it is equivalent to prove that

e 1 (—1)"2z
. =7 22
sin(mr —n
(2) < neN <
But as m = 7 cot(z) + 7 tan %, using the formulae above, we obtain:
T bi84
- = mcot(mwz) + m tan —
sin(wz) 2
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 — ad 4z
==+
Z Ezz Z(2n+1)2—z2
 — 2z ad 4z
=-+ -_— e
z nZ:;‘ZZ (2n)? Z 22— (2n+1)? Z(:)Zz—(%—i-l)2

_ il 1)”22

4 Main result

Theorem 2 The function f(z) = e“*7" satisfies the property P.

Proof 1f we define Ay = e(_l)k, k € Z, it follows from the expansion (2) of the
cotangent that

(—D¥log(rs)

Zlog(kk)sinc(t — k) = log(ho)sinc(r) + 2t sin(rrt) Z
b1

12
kel keN k
. 2t sin(mwrt) (7 cot(smt) 1
= t _—
st + (T - )
= sinc(t)(1 + ¢ cot(mwt) — 1)
= cos(rt)
hence,

f(t) — H A‘zlnC(l, _ k) — eCOS(ﬂl)’

keZ

whose graphical representation is shown in Fig. 1.

Fig. 1 f(t) = o507
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It is clear that f is analytic. Now we show that f satisfies P. Let us now see that
1 n
lim (Z Af sine(t — k)) o | ) Q)
keZ keZ

Itis clear that if r € Z, (5) holds. So, we may assume that ¢ ¢ Z. Using the formulae
of Lemma 3, we can define the functions:

A(t)—z 1 —ntan Tt +1 T
- = k)2 =12 4¢ 2 22 2tsin(rt)

1 b4 wt

keN
Computing, and using again the notation
1
h(t,n) = Zx;; sinc(t — k) 7
keZ
we have

1
2t sin(rrt) Z (=D}

t2 _ k2
keN

2t sin(rt) (—e%A(t) + e—%B(t))
T

h(t,n) = Aosinc(t) +

1
= ensinc(t) +
So, taking limit when » tends to infinity in expression above, it is

1
lim h(t,n) = nlgréOkZZ:Ak sinc(t — k)
€

. 2t sin(t) T 1
sine(s) + b (2: sin(rt) 2t2)

On the other hand, developing the exponential in a power series and using the identity
above

sinc(t) — B(t)—1=0,

2t sin(7rt) A()
s

2t sin(mwt
n (rt)
bid

we have

2t sin(rrt) _12tsin(rrt)

nh(t,n) —1) = nenl (sinc(t) — A(t)) + ne B(t) —n

2t sin(rrt) 2t sin(rrt)

= ne~ (sinc(t) - A + TB(r))
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+n@ ()( n—e}l)—n
n(e%—l)—f— MB()( n_e%)

1 1 1 2ts1n(m)B 2 1
(oo () 0 (4o (7))

4t sin(rt) 1 1
=l—-—FBt)+—+o|-
b4 2n n

so, by (6), we have:

4t sin(rt
lim n(h.n) — 1) = 1 — 180D gy
n—00 T
=1 —tan (%t) sin(rt) = 1 — 2 sin? (%t)
= cos(rrt)

concluding that

lim (h(t, }’l))n — eCOS(ﬂ[) — H)\]EIHC(I _ k)

n—oo
keZ

References

1.

=

L. Agud, R.G. Cataldn, New Shannon’s sampling recomposition. Rev. Acad. Ciencias, Zaragoza 56,
45-48 (2011)

A. Antuia, J.L.G. Guirao, M.A. Lépez, An asymptotic sampling recomposition theorem for Gaussian
signals. Mediterr. J. Math. 8, 349-367 (2011)

A. Antuiia, Teorema del muestreo potencial asintotico (Universidad Publica de Navarra, Navarra, 2004).
Ph.D. Thesis.

J.L.G. Guirao, M.T. de Bustos, Dynamics of pseudo-radioactive chemical products via sampling theory.
J. Math. Chem. 50(2), 374-378 (2012)

F. Marvasti, A.K. Jain, Zero crossings bandwith compression, and restoration of nonlinearly distorted
bandlimited signals. J. Opt. Soc. Am. 3, 651-654 (1986)

D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960)
C.E. Shannon, Communication in the presence of noise. Proc. IRE 137, 10-21 (1949)

Al Zayed, Advances in Shannon’s sampling theory (CRC Press, Boca Raton, 1993). Ed.

@ Springer



	Decomposition of pseudo-radioactive chemical products with a mathematical approach
	Abstract
	1 Introduction and statement of the main result
	2 On the property mathcal P
	3 Auxiliary results
	4 Main result
	References


