Decomposition of pseudo-radioactive chemical products with a mathematical approach

M. Teresa de Bustos Muñoz • Juan L. G. Guirao • Jesús Vigo-Aguiar

Received: 7 October 2013 / Accepted: 29 October 2013 / Published online: 15 November 2013
© Springer Science+Business Media New York 2013

Abstract

The aim of this paper is to study the decomposition of pseudo-radioactive products that follow a dynamics determined by a trigonometric factor. In particular for maps of the form $e^{\cos (\pi t)}$ is proved that an asymptotic sampling recomposition property, generalizing the classical Shannon-Whittaker-Kotel'nikov Theorem, works.

Keywords Pseudo-radioactive • Band-limited signal • Shannon's sampling theorem • Approximation theory

1 Introduction and statement of the main result

In [4], we studied the decomposition of pseudo-radioactive products that follow a Gaussian dynamics in terms of a generalization of the well-known Shannon-Whittaker-Kotel'nikov Theorem (see, for instance, [7] and [8]) for a non-banded limited maps on $L^{2}(\mathbb{R})$, i.e. for Paley-Wiener signals.

One of the main characteristics of this kind of products is that their decomposition dynamics is unknown except for a little amount of laboratory temporal samples. Some

[^0]experimental results have shown that, locally, their behaviors have a Gaussian adjustment, that is, their decomposition function is $f(t)=e^{-\lambda t^{2}}, \lambda>0$. In [4] we saw that this type of functions satisfies an asymptotic sampling recomposition property called \mathcal{P}.

This paper follows the spirit of [4] and extends its results to pseudo-radioactive materials whose dynamics is not, strictly speaking, a Gaussian function. More precisely, we shall prove that the function $f(t)=e^{\cos (\pi t)}$ holds the property \mathcal{P} for every t. Note that the fact that property \mathcal{P} works for trigonometrical maps implies that is possible to use the recomposition property for chemical reactions models with oscillators, i.e., ordinary differential equations of order two.

2 On the property \mathcal{P}

We shall remember that a central result of the Signal Theory is the Shannon-WhittakerKotel'nikov's Theorem (see [7] or [8]), based on the normalized cardinal sinus map defined by:

$$
\operatorname{sinc}(t)= \begin{cases}\frac{\sin (\pi t)}{\pi t} & \text { if } t \neq 0 \\ 1 & \text { if } t=0\end{cases}
$$

Later, Middleton incorporated a new theorem dealing with band step functions (see [6]), and opened the door to important generalizations. Marvasti and Jain (see [5]) proved that the bandwidth of a signal can be compressed by a ratio of $\frac{1}{n}$ if and only if the signal has $n^{\text {th }}$-order zero crossings or zeros (if complex), and Agud and Catalán (see [1]) stated a new generalization where they prove that we can apply the SWK theorem to a particular kind of signals using less samples per unit of time. All of these generalizations and expansions tried to obtain approximations of non band-limited signals using band-limited ones by increasing their band size. In [4] we studied a different approach, because we kept constant the sampling frequency and generalized in the limit the results of Marvasti et al. and Agud et al. (see [4] and references inside).

Antuña et al. (see [2] and [3]) stated and proved, respectively, the following property \mathcal{P} and theorem.

Property $1 \mathcal{P}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map and $\tau \in \mathbb{R}^{+}$. We say that f holds the property \mathcal{P} for τ if

$$
\begin{equation*}
f(t)=\lim _{n \rightarrow \infty}\left(\sum_{k \in \mathbb{Z}} f^{\frac{1}{n}}\left(\frac{k}{\tau}\right) \sin c(\tau t-k)\right)^{n} \tag{1}
\end{equation*}
$$

Theorem 1 The Gaussian maps, i.e. maps of the form $e^{-\lambda t^{2}}$, hold property \mathcal{P} for every given $\tau \in \mathbb{R}^{+}$.

Now we shall prove an analogous result for the function $f(t)=e^{\cos (\pi t)}$.

3 Auxiliary results

Lemma 1 The equality

$$
\begin{equation*}
\pi \cot (\pi z)=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}} \tag{2}
\end{equation*}
$$

holds for all $z \in \mathbb{Z}$.
In order to prove this lemma, we need, previously, the following one:
Lemma 2 (The additive Herglotz Lemma) Let f be an entire function such that

$$
\begin{equation*}
f(z)=\frac{1}{2} f\left(\frac{z}{2}\right)+\frac{1}{2} f\left(\frac{z+1}{2}\right), \quad \forall z \in \mathbb{C} . \tag{3}
\end{equation*}
$$

Then f is constant.
Proof Assume that f is an entire function and satisfies (3), and let D_{r} be the disk

$$
D_{r}=\{z \in \mathbb{C}:|z| \leq r\},
$$

with $r>1$. It is clear that if $z \in D_{r}$ then $\frac{z}{2}, \frac{z+1}{2} \in D_{r}$.
Let $M=\max _{z \in D_{r}}\left\{\left|f^{\prime}(z)\right|\right\}$. If we differentiate the expression (3), we obtain:

$$
f^{\prime}(z)=\frac{1}{4} f^{\prime}\left(\frac{z}{2}\right)+\frac{1}{4} f^{\prime}\left(\frac{z+1}{2}\right) \quad \forall z \in D_{r}
$$

so,

$$
4\left|f^{\prime}(z)\right|=\left|f^{\prime}\left(\frac{z}{2}\right)+f^{\prime}\left(\frac{z+1}{2}\right)\right| \leq 2 M
$$

Hence, $\left|f^{\prime}(z)\right| \leq \frac{M}{2}$, for all z, in contradiction with the hypothesis, unless $M=0$. In this case, $f^{\prime}(z)=0$ in D_{r}, and so f is constant.

We can now prove Lemma 1.
Proof (Lemma 1) Let us consider the function

$$
g(z)=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} \frac{1}{z+k}=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}} .
$$

It is clear that $\pi \cot (\pi z)$ y $g(z)$ are meromorphic functions, \mathbb{Z}-periodic, with simple poles at $z=n, n \in \mathbb{Z}$.

It is immediate that $\cot (\pi z)$ satisfies (3), since

$$
\cot (\pi z)=\frac{1}{2} \cot \frac{\pi z}{2}+\frac{1}{2} \cot \frac{\pi(z+1)}{2}
$$

Similarly, as $\sum_{k=-n}^{n} \frac{1}{z+k}$ satisfies as well (3), up to a remainder term that for $n \rightarrow \infty$ tends to 0 , we can state that the function $f(z)=g(z)-\pi \cot (\pi z)$ is an entire function that satisfies Lemma 2. Hence, $f(z)$ is constant. But $f\left(\frac{1}{2}\right)=0$, since $\pi \cot (\pi z)$ vanishes at $z=\frac{1}{2}$ and the sum $g\left(\frac{1}{2}\right)$ is a real telescopic series

$$
g\left(\frac{1}{2}\right)=2+\sum_{n=1}^{\infty} \frac{4}{1-4 n^{2}}=0
$$

we have that $f(z)=0$.
From the Eq. (2), a couple of related identities can be obtained:

Lemma 3 The equalities

$$
\begin{align*}
\pi \tan \frac{\pi z}{2} & =\sum_{n=1}^{\infty} \frac{4 z}{(2 n-1)^{2}-z^{2}} \tag{4}\\
\sum_{n \in \mathbb{N}} \frac{(-1)^{n+1}}{n^{2}-z^{2}} & =\frac{-1}{z}+\frac{\pi}{2 z \sin (\pi z)}
\end{align*}
$$

hold for all $z \in \mathbb{C}$.
Proof Having in mind that $\pi \tan \frac{\pi z}{2}=\pi \cot \frac{\pi z}{2}-2 \pi \cot (\pi z)$, we have

$$
\pi \cot \frac{\pi z}{2}-2 \pi \cot (\pi z)=\sum_{n=1}^{\infty} \frac{z}{\left(\frac{z}{2}\right)^{2}-n^{2}}-\sum_{n=1}^{\infty} \frac{4 z}{z^{2}-n^{2}}
$$

Splitting the last series into even and odd terms, we have:

$$
\sum_{n=1}^{\infty} \frac{4 z}{z^{2}-4 n^{2}}-\sum_{n=0}^{\infty} \frac{4 z}{z^{2}-(2 n+1)^{2}}-\sum_{n=1}^{\infty} \frac{4 z}{z^{2}-4 n^{2}}=\sum_{n=0}^{\infty} \frac{4 z}{\left(2^{n}+1\right)^{2}-z^{2}}
$$

Regarding the second identity, note that it is equivalent to prove that

$$
\frac{\pi}{\sin (\pi z)}=\frac{1}{z}+\sum_{n \in \mathbb{N}} \frac{(-1)^{n} 2 z}{z^{2}-n^{2}}
$$

But as $\frac{\pi}{\sin (\pi z)}=\pi \cot (\pi z)+\pi \tan \frac{\pi z}{2}$, using the formulae above, we obtain:

$$
\frac{\pi}{\sin (\pi z)}=\pi \cot (\pi z)+\pi \tan \frac{\pi z}{2}
$$

$$
\begin{aligned}
& =\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}+\sum_{n=0}^{\infty} \frac{4 z}{(2 n+1)^{2}-z^{2}} \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-(2 n)^{2}}+\sum_{n=0}^{\infty} \frac{2 z}{z^{2}-(2 n+1)^{2}}-\sum_{n=0}^{\infty} \frac{4 z}{z^{2}-(2 n+1)^{2}} \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 z}{z^{2}-n^{2}}
\end{aligned}
$$

4 Main result

Theorem 2 The function $f(z)=e^{\cos (\pi t)}$ satisfies the property \mathcal{P}.
Proof If we define $\lambda_{k}=e^{(-1)^{k}}, k \in \mathbb{Z}$, it follows from the expansion (2) of the cotangent that

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \log \left(\lambda_{k}\right) \operatorname{sinc}(t-k) & =\log \left(\lambda_{0}\right) \operatorname{sinc}(t)+\frac{2 t \sin (\pi t)}{\pi} \sum_{k \in \mathbb{N}} \frac{(-1)^{k} \log \left(\lambda_{k}\right)}{t^{2}-k^{2}} \\
& =\operatorname{sinc}(t)+\frac{2 t \sin (\pi t)}{\pi}\left(\frac{\pi \cot (\pi t)}{2 t}-\frac{1}{2 t^{2}}\right) \\
& =\operatorname{sinc}(t)(1+\pi t \cot (\pi t)-1) \\
& =\cos (\pi t)
\end{aligned}
$$

hence,

$$
f(t)=\prod_{k \in \mathbb{Z}} \lambda_{k}^{\operatorname{sinc}}(t-k)=e^{\cos (\pi t)},
$$

whose graphical representation is shown in Fig. 1.

Fig. $1 f(t)=e^{\cos (\pi t)}$

It is clear that f is analytic. Now we show that f satisfies \mathcal{P}. Let us now see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sum_{k \in \mathbb{Z}} \lambda_{k}^{\frac{1}{n}} \operatorname{sinc}(t-k)\right)^{n}=\prod_{k \in \mathbb{Z}} \lambda_{k}^{\operatorname{sinc}}(t-k) \tag{5}
\end{equation*}
$$

It is clear that if $t \in \mathbb{Z}$, (5) holds. So, we may assume that $t \notin \mathbb{Z}$. Using the formulae of Lemma 3, we can define the functions:

$$
\begin{align*}
& A(t)=\sum_{k \in \mathbb{N}} \frac{1}{(2 k)^{2}-t^{2}}=\frac{\pi}{4 t} \tan \left(\frac{\pi t}{2}\right)+\frac{1}{2 t^{2}}-\frac{\pi}{2 t \sin (\pi t)} \\
& B(t)=\sum_{k \in \mathbb{N}} \frac{1}{(2 k-1)^{2}-t^{2}}=\frac{\pi}{4 t} \tan \left(\frac{\pi t}{2}\right) \tag{6}
\end{align*}
$$

Computing, and using again the notation

$$
\begin{equation*}
h(t, n)=\sum_{k \in \mathbb{Z}} \lambda_{k}^{\frac{1}{n}} \operatorname{sinc}(t-k) \tag{7}
\end{equation*}
$$

we have

$$
\begin{aligned}
h(t, n) & =\lambda_{0} \operatorname{sinc}(t)+\frac{2 t \sin (\pi t)}{\pi} \sum_{k \in \mathbb{N}} \frac{(-1)^{k} \lambda_{k}^{\frac{1}{n}}}{t^{2}-k^{2}} \\
& =e^{\frac{1}{n}} \operatorname{sinc}(t)+\frac{2 t \sin (\pi t)}{\pi}\left(-e^{\frac{1}{n}} A(t)+e^{-\frac{1}{n}} B(t)\right)
\end{aligned}
$$

So, taking limit when n tends to infinity in expression above, it is

$$
\begin{aligned}
\lim _{n \rightarrow \infty} h(t, n) & =\lim _{n \rightarrow \infty} \sum_{k \in \mathbb{Z}} \lambda_{k}^{\frac{1}{n}} \operatorname{sinc}(t-k) \\
& =\operatorname{sinc}(t)+\frac{2 t \sin (\pi t)}{\pi}\left(\frac{\pi}{2 t \sin (\pi t)}-\frac{1}{2 t^{2}}\right)=1
\end{aligned}
$$

On the other hand, developing the exponential in a power series and using the identity above

$$
\operatorname{sinc}(t)-\frac{2 t \sin (\pi t)}{\pi} A(t)+\frac{2 t \sin (\pi t)}{\pi} B(t)-1=0
$$

we have

$$
\begin{aligned}
n(h(t, n)-1) & =n e^{\frac{1}{n}}\left(\operatorname{sinc}(t)-\frac{2 t \sin (\pi t)}{\pi} A(t)\right)+n e^{-\frac{1}{n}} \frac{2 t \sin (\pi t)}{\pi} B(t)-n \\
& =n e^{-\frac{1}{n}}\left(\operatorname{sinc}(t)-\frac{2 t \sin (\pi t)}{\pi} A(t)+\frac{2 t \sin (\pi t)}{\pi} B(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +n \frac{2 t \sin (\pi t)}{\pi} B(t)\left(e^{-\frac{1}{n}}-e^{\frac{1}{n}}\right)-n \\
= & n\left(e^{\frac{1}{n}}-1\right)+n \frac{2 t \sin (\pi t)}{\pi} B(t)\left(e^{-\frac{1}{n}}-e^{\frac{1}{n}}\right) \\
= & n\left(\frac{1}{n}+\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right)+n \frac{2 t \sin (\pi t)}{\pi} B(t)\left(\frac{-2}{n^{2}}+o\left(\frac{1}{n^{2}}\right)\right) \\
= & 1-\frac{4 t \sin (\pi t)}{\pi} B(t)+\frac{1}{2 n}+o\left(\frac{1}{n}\right)
\end{aligned}
$$

so, by (6), we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n(h(t, n)-1) & =1-\frac{4 t \sin (\pi t)}{\pi} B(t) \\
& =1-\tan \left(\frac{\pi t}{2}\right) \sin (\pi t)=1-2 \sin ^{2}\left(\frac{\pi t}{2}\right) \\
& =\cos (\pi t)
\end{aligned}
$$

concluding that

$$
\lim _{n \rightarrow \infty}(h(t, n))^{n}=e^{\cos (\pi t)}=\prod_{k \in \mathbb{Z}} \lambda_{k}^{\operatorname{sinc}}(t-k)
$$

References

1. L. Agud, R.G. Catalán, New Shannon's sampling recomposition. Rev. Acad. Ciencias, Zaragoza 56, 45-48 (2011)
2. A. Antuña, J.L.G. Guirao, M.A. López, An asymptotic sampling recomposition theorem for Gaussian signals. Mediterr. J. Math. 8, 349-367 (2011)
3. A. Antuña, Teorema del muestreo potencial asintótico (Universidad Pública de Navarra, Navarra, 2004). Ph.D. Thesis.
4. J.L.G. Guirao, M.T. de Bustos, Dynamics of pseudo-radioactive chemical products via sampling theory. J. Math. Chem. 50(2), 374-378 (2012)
5. F. Marvasti, A.K. Jain, Zero crossings bandwith compression, and restoration of nonlinearly distorted bandlimited signals. J. Opt. Soc. Am. 3, 651-654 (1986)
6. D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960)
7. C.E. Shannon, Communication in the presence of noise. Proc. IRE 137, 10-21 (1949)
8. A.I. Zayed, Advances in Shannon's sampling theory (CRC Press, Boca Raton, 1993). Ed.

[^0]: M. T. de Bustos Muñoz (\boxtimes) • J. Vigo-Aguiar

 Departamento de Matemática Aplicada, Universidad de Salamanca, C/del Parque, 2, 37008 Salamanca, Castilla y León, Spain
 e-mail: tbustos@usal.es
 J. Vigo-Aguiar
 e-mail: jvigo@usal.es
 J. L. G. Guirao

 Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Campus de la Muralla, 30203 Cartagena, Región de Murcia, Spain
 e-mail: juan.garcia@upct.es

