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Abstract The aim of this paper is to study the decomposition of pseudo–radioactive
products that follow a dynamics determined by a trigonometric factor. In particular
for maps of the form ecos(π t) is proved that an asymptotic sampling recomposition
property, generalizing the classical Shannon–Whittaker–Kotel’nikov Theorem, works.

Keywords Pseudo-radioactive · Band-limited signal · Shannon’s sampling theorem ·
Approximation theory

1 Introduction and statement of the main result

In [4], we studied the decomposition of pseudo–radioactive products that follow
a Gaussian dynamics in terms of a generalization of the well-known Shannon–
Whittaker–Kotel’nikov Theorem (see, for instance, [7] and [8]) for a non-banded
limited maps on L2(R), i.e. for Paley-Wiener signals.

One of the main characteristics of this kind of products is that their decomposition
dynamics is unknown except for a little amount of laboratory temporal samples. Some
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experimental results have shown that, locally, their behaviors have a Gaussian adjust-
ment, that is, their decomposition function is f (t) = e−λt2

, λ > 0. In [4] we saw that
this type of functions satisfies an asymptotic sampling recomposition property called
P .

This paper follows the spirit of [4] and extends its results to pseudo–radioactive
materials whose dynamics is not, strictly speaking, a Gaussian function. More pre-
cisely, we shall prove that the function f (t) = ecos(π t) holds the property P for every
t . Note that the fact that property P works for trigonometrical maps implies that is pos-
sible to use the recomposition property for chemical reactions models with oscillators,
i.e., ordinary differential equations of order two.

2 On the property P

We shall remember that a central result of the Signal Theory is the Shannon–Whittaker–
Kotel’nikov’s Theorem (see [7] or [8]), based on the normalized cardinal sinus map
defined by:

sinc(t) =
{ sin(π t)

π t if t �= 0,

1 if t = 0.

Later, Middleton incorporated a new theorem dealing with band step functions (see
[6]), and opened the door to important generalizations. Marvasti and Jain (see [5])
proved that the bandwidth of a signal can be compressed by a ratio of 1

n if and only if

the signal has nth-order zero crossings or zeros (if complex), and Agud and Catalán
(see [1]) stated a new generalization where they prove that we can apply the SWK
theorem to a particular kind of signals using less samples per unit of time . All of these
generalizations and expansions tried to obtain approximations of non band-limited
signals using band-limited ones by increasing their band size. In [4] we studied a
different approach, because we kept constant the sampling frequency and generalized
in the limit the results of Marvasti et al. and Agud et al. (see [4] and references
inside).

Antuña et al. (see [2] and [3]) stated and proved, respectively, the following property
P and theorem.

Property 1 P . Let f : R → R be a map and τ ∈ R
+. We say that f holds the property

P for τ if

f (t) = lim
n→∞

(∑
k∈Z

f
1
n

(
k

τ

)
sinc(τ t − k)

)n

(1)

Theorem 1 The Gaussian maps, i.e. maps of the form e−λt2
, hold property P for

every given τ ∈ R
+.

Now we shall prove an analogous result for the function f (t) = ecos(π t).
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3 Auxiliary results

Lemma 1 The equality

π cot(π z) = 1

z
+

∞∑
n=1

2z

z2 − n2 (2)

holds for all z ∈ Z.

In order to prove this lemma, we need, previously, the following one:

Lemma 2 (The additive Herglotz Lemma) Let f be an entire function such that

f (z) = 1

2
f
( z

2

)
+ 1

2
f

(
z + 1

2

)
, ∀z ∈ C. (3)

Then f is constant.

Proof Assume that f is an entire function and satisfies (3), and let Dr be the disk

Dr = {z ∈ C : |z| ≤ r},

with r > 1. It is clear that if z ∈ Dr then z
2 , z+1

2 ∈ Dr .
Let M = max

z∈Dr
{| f ′(z)|}. If we differentiate the expression (3), we obtain:

f ′(z) = 1

4
f ′ ( z

2

)
+ 1

4
f ′

(
z + 1

2

)
∀z ∈ Dr

so,

4| f ′(z)| =
∣∣∣∣ f ′ ( z

2

)
+ f ′

(
z + 1

2

)∣∣∣∣ ≤ 2M

Hence, | f ′(z)| ≤ M
2 , for all z, in contradiction with the hypothesis, unless M = 0. In

this case, f ′(z) = 0 in Dr , and so f is constant. 	

We can now prove Lemma 1.

Proof (Lemma 1) Let us consider the function

g(z) = lim
n→∞

n∑
k=−n

1

z + k
= 1

z
+

∞∑
n=1

2z

z2 − n2 .

It is clear that π cot(π z) y g(z) are meromorphic functions, Z−periodic, with simple
poles at z = n, n ∈ Z.
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It is immediate that cot(π z) satisfies (3), since

cot(π z) = 1

2
cot

π z

2
+ 1

2
cot

π(z + 1)

2

Similarly, as
n∑

k=−n

1
z+k satisfies as well (3), up to a remainder term that for n → ∞ tends

to 0, we can state that the function f (z) = g(z) − π cot(π z) is an entire function that
satisfies Lemma 2. Hence, f (z) is constant. But f

( 1
2

) = 0, since π cot(π z) vanishes
at z = 1

2 and the sum g
( 1

2

)
is a real telescopic series

g

(
1

2

)
= 2 +

∞∑
n=1

4

1 − 4n2 = 0,

we have that f (z) = 0. 	

From the Eq. (2), a couple of related identities can be obtained:

Lemma 3 The equalities

π tan π z
2 =

∞∑
n=1

4z
(2n−1)2−z2

∑
n∈N

(−1)n+1

n2−z2 = −1
z + π

2z sin(π z)

(4)

hold for all z ∈ C.

Proof Having in mind that π tan π z
2 = π cot π z

2 − 2π cot(π z), we have

π cot
π z

2
− 2π cot(π z) =

∞∑
n=1

z( z
2

)2 − n2
−

∞∑
n=1

4z

z2 − n2

Splitting the last series into even and odd terms, we have:

∞∑
n=1

4z

z2 − 4n2 −
∞∑

n=0

4z

z2 − (2n + 1)2 −
∞∑

n=1

4z

z2 − 4n2 =
∞∑

n=0

4z

(2n + 1)2 − z2

Regarding the second identity, note that it is equivalent to prove that

π

sin(π z)
= 1

z
+

∑
n∈N

(−1)n2z

z2 − n2

But as π
sin(π z) = π cot(π z) + π tan π z

2 , using the formulae above, we obtain:

π

sin(π z)
= π cot(π z) + π tan

π z

2
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= 1

z
+

∞∑
n=1

2z

z2 − n2 +
∞∑

n=0

4z

(2n + 1)2 − z2

= 1

z
+

∞∑
n=1

2z

z2 − (2n)2 +
∞∑

n=0

2z

z2 − (2n + 1)2 −
∞∑

n=0

4z

z2 − (2n + 1)2

= 1

z
+

∞∑
n=1

(−1)n2z

z2 − n2

	


4 Main result

Theorem 2 The function f (z) = ecos(π t) satisfies the property P .

Proof If we define λk = e(−1)k
, k ∈ Z, it follows from the expansion (2) of the

cotangent that

∑
k∈Z

log(λk)sinc(t − k) = log(λ0)sinc(t) + 2t sin(π t)

π

∑
k∈N

(−1)k log(λk)

t2 − k2

= sinc(t) + 2t sin(π t)

π

(
π cot(π t)

2t
− 1

2t2

)

= sinc(t)(1 + π t cot(π t) − 1)

= cos(π t)

hence,

f (t) =
∏
k∈Z

λsinc
k (t − k) = ecos(π t),

whose graphical representation is shown in Fig. 1.

Fig. 1 f (t) = ecos(π t)
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It is clear that f is analytic. Now we show that f satisfies P . Let us now see that

lim
n→∞

(∑
k∈Z

λ
1
n
k sinc(t − k)

)n

=
∏
k∈Z

λsinc
k (t − k) (5)

It is clear that if t ∈ Z, (5) holds. So, we may assume that t /∈ Z. Using the formulae
of Lemma 3, we can define the functions:

A(t) =
∑
k∈N

1

(2k)2 − t2 = π

4t
tan

(
π t

2

)
+ 1

2t2 − π

2t sin(π t)

B(t) =
∑
k∈N

1

(2k − 1)2 − t2 = π

4t
tan

(
π t

2

)
(6)

Computing, and using again the notation

h(t, n) =
∑
k∈Z

λ
1
n
k sinc(t − k) (7)

we have

h(t, n) = λ0sinc(t) + 2t sin(π t)

π

∑
k∈N

(−1)kλ
1
n
k

t2 − k2

= e
1
n sinc(t) + 2t sin(π t)

π

(
−e

1
n A(t) + e− 1

n B(t)
)

So, taking limit when n tends to infinity in expression above, it is

lim
n→∞ h(t, n) = lim

n→∞
∑
k∈Z

λ
1
n
k sinc(t − k)

= sinc(t) + 2t sin(π t)

π

(
π

2t sin(π t)
− 1

2t2

)
= 1

On the other hand, developing the exponential in a power series and using the identity
above

sinc(t) − 2t sin(π t)

π
A(t) + 2t sin(π t)

π
B(t) − 1 = 0,

we have

n(h(t, n) − 1) = ne
1
n

(
sinc(t) − 2t sin(π t)

π
A(t)

)
+ ne− 1

n
2t sin(π t)

π
B(t) − n

= ne− 1
n

(
sinc(t) − 2t sin(π t)

π
A(t) + 2t sin(π t)

π
B(t)

)
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+n
2t sin(π t)

π
B(t)

(
e− 1

n − e
1
n

)
− n

= n
(

e
1
n − 1

)
+ n

2t sin(π t)

π
B(t)

(
e− 1

n − e
1
n

)

= n

(
1

n
+ 1

2n2 + o

(
1

n2

))
+ n

2t sin(π t)

π
B(t)

(−2

n2 + o

(
1

n2

))

= 1 − 4t sin(π t)

π
B(t) + 1

2n
+ o

(
1

n

)

so, by (6), we have:

lim
n→∞ n(h(t, n) − 1) = 1 − 4t sin(π t)

π
B(t)

= 1 − tan

(
π t

2

)
sin(π t) = 1 − 2 sin2

(
π t

2

)

= cos(π t)

concluding that

lim
n→∞

(
h(t, n)

)n = ecos(π t) =
∏
k∈Z

λsinc
k (t − k)
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